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Abstract—We propose a novel method for performing steering

and distance computations in sample-based planning for dy-

namic systems that is applicable to RRT-like motion planning

algorithms. In order to maintain the differential constraint

to the dynamics, these operations must solve optimal control

problems which are expensive to compute. Similar to conven-

tional approaches, we approximate distance and steering through

system linearization and solving linear quadratic regulation and

tracking problems. A number of improvements are made. We

linearize about zero-control trajectories as opposed to single

states. We employ a trust region that assesses a maximal time

horizon for each linearization online instead of choosing a

conservative one a priori. We show how these methods can

be implemented efficiently through precomputation and caching

redundancies in the linear optimal control for many executions

on a single linearization. For example, assessing nearest neighbor

does not require any additional integrations or simulations.

These improvements make long time horizons viable, allowing for

meaningful distance computations and steering between distant

states. The methods are demonstrated on a 1-link and 2-link

pendulum on a cart.

I. INTRODUCTION

Planning for dynamic systems is trajectory exploration
through nonconvex state spaces. These non-convexities often
include configuration space obstacles and regions of inevitable
collision [10]. While sample-based planning algorithms differ
in many ways they commonly conduct many short trajectory
explorations to connect or nearly connect a large number of
stochastically sampled states with the goal of connecting a
start state to a final state. Earlier algorithms like RRT [10]
guarantee with probability one that if a connecting trajectory
exists, that the algorithm will find it. Newer algorithms like
RRT*, PRM*, SST*, and FMT* [7, 8, 9, 11, 12] guarantee
asymptotic convergence to the globally optimal connecting
trajectory. For dynamic systems, planners are in need of
computationally efficient methods to compute distances—e.g.
for assessing nearest neighbors—and to steer—i.e. to extend
to sampled states. Furthermore, each method must be able to
handle numerical issues like sensitivities to initial conditions
so that the steering trajectories can have a significant time
horizon.

The methods proposed in this paper are complementary to
[2, 13, 14]. For planning dynamic systems, distance compu-
tation and steering are solutions to optimal control problems.
They are often approximated through linearizing the nonlinear
dynamics and solving linear quadratic regulation (LQR) or
tracking (LQT) problems [2, 13]. Both [2, 13] linearize around
a single state and so the system is time-invariant. In compar-
ison, we linearize around the zero-control or “free” trajectory
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Fig. 1. Connecting and explored trajectories for 2-link a and 1-link
b pendulum problems. c) Connecting and explored trajectories for 1-link
pendulum problem in (p, ✓) configuration space.

so that the linearization remains a good approximation for
longer time horizons. Since our approximate system is time-
varying we formulate the LQR and LQT so that through
precomputation and caching they can be solved efficiently for
many distance and steering executions from the same state.

Perez et al. [13] note that the distance computation is
inaccurate for states far apart—i.e. states outside linearized
region. For this reason, we propose a trust region-like approach
to expand and contract a maximal time horizon online which
provides a level of assurance that all LQR and LQT solutions
remain in regions where the linearization dominates. Addition-
ally, the trust region avoids needing a conservative maximal
time horizon established for the full space.

Both [2, 14] set up the linear quadratic optimal control
problem as an optimal state transfer without a running state



cost. As Hauser [4] indicates, the solution to such a problem
is open-loop, which can be numerically intractable as the con-
ditioning of the reachability Gramian becomes poor. Indeed,
we show that the reachability Gramian’s condition number
approaches machine precision for the n-link pendulum on a
cart in the examples, and as such, the methods in [2, 14]
are infeasible. Instead, we propose implementing a feedback
loop and performing the same state transfer procedure on the
closed-loop system, which has a reachability Gramian with
improved conditioning.

The state and trajectory solutions to the LQR problems are
infeasible—i.e. trajectories for the linear system can not be
trajectories of a nonlinear system. In order to steer, we im-
plement the trajectory functional projection operator in [3, 5]
to project approximate trajectories to feasible trajectories. We
consider exact and inexact steering. Inexact steering finds a
trajectory that propagates from an initial state toward a desired
state while exact steering finds a trajectory that connects the
two states. Exact steering requires solving a boundary value
problem. We provide a gradient calculation for exact steering
which in a steepest descent approach iterates through inexact
steering problems with solution trajectories that converge to
a trajectory that solves the exact steering problem. A similar
approach is taken in [4].

The proposed distance computation and steering methods in
the paper are contributions to general planners. The methods
are designed so that long time horizon exploring is viable. This
is reflected in the examples where a small number of vertices
of an RRT are needed to plan a 1-link and a 2-link pendulum
on a cart through a corridor of obstacles. The systems and
connecting and explored trajectories are depicted in Figure 1.
The pendulum on a cart is under-actuated and unstable. The
2-link pendulum on a cart is chaotic.

The paper is organized as follows: Section II reviews
planning for dynamic systems and introduces nearest neighbor,
inexact steering and exact steering. Section III provides results
for exactly and inexactly steering affine linear systems. Sec-
tion IV extends the linear approximation results to nonlinear
systems through a projection operator and a trust region.
Section V provides an RRT algorithm with the steering and
distances methods proposed in the paper as well as applies
it to plan a 1-link and 2-link pendulum on a cart through a
corridor of obstacles.

II. REVIEW OF PLANNING FOR DYNAMIC SYSTEMS

We wish to provide tools for kinodynamic planning where
the dynamic system may be nonlinear, under-actuated, and
unstable. The kinodynamic planning problem is to find a state
and control trajectory (x, u) that connects a start state x

start

to a goal state x
goal

that satisfies the differential constraint
given by the system dynamics

ẋ(t) = f(x(t), u(t)). (1)

Set the space of feasible state and control trajectories
S
x

start

[0, t
final

] with final time t
final

> 0 as the space of

all trajectories (x, u) for which Eq. 1 is satisfied—i.e. where
for each t 2 [0, t

final

], x(t)� x
start

�
R
t

0 f(x(⌧), u(⌧)) = 0.
Additionally, the state and control must remain in the set

of allowable state and control (X,U) throughout the full
trajectory where the allowable state subset X ⇢ Rn and
control subset U ⇢ Rm are compact. The set X is free of all
obstacles and as such can be nonconvex. The non-allowable
states may include configuration space obstacles and regions
of inevitable collision [10]. The boundaries of the set U may
be the saturation limits of the system actuators. It is worth
noting that a feasible trajectory (x, u) 2 S

x

start

[0, t
final

] may
not be allowable.

Planning algorithms either find a path that connects a start
state to an end state or find the optimal path. An optimal path
minimizes a cost function

J(x, u, t
final

) =

Z
t

final

0
`(x(⌧), u(⌧), ⌧)d⌧ +`

f

(t
final

) (2)

where ` is the running cost and `
f

is the terminal cost. The
optimal path is the one that minimizes J :

Sample-based planning algorithms find a feasible or optimal
path by generating a graph G = (V, E) where the vertices V
are explored states x 2 X and the edges E are state and control
trajectories that connect two states in V —i.e. (x, u; t

h

) 2 E
implies for time horizon t

h

> 0, x(0) 2 V , x(t
h

) 2 V and
(x, u) 2 S

x(0)[0, th].
Methods based on RRT build the graph through two func-

tions, nearest neighbor and steering. We consider both exact
and inexact steering. Exact steering connects an initial and
desired state while inexact steering only propagates the system
toward the desired state.

A. Nearest Neighbor

The nearest neighbor calculation relies on the choice of
distance function d : X ⇥ X ! R between the states
x0 2 V and the sampled state x

samp

. For dynamic systems
Euclidean distance is a poor choice, even for linear time-
invariant systems [2]. Instead, as [10] suggests, the ideal
distance function is the cost of the optimal trajectory that
transfers the state x0 to or near x1. Here, optimality is given
by solving an optimal control problem for a specified cost
function J where J may have the same form as Eq. 2.

d(x0, x1) = min
t

h

>0;(x,u)2S
x0 [0,th]

J. (3)

The constraint S
x0 [0, th] to feasible trajectories makes this

minimization an optimal control problem which can be compu-
tationally expensive especially in the context of planning. As
such, [2, 13] approximate the distance through a linearization
and the solution through LQR, which is also the approach
taken in this paper. However, we additionally propose a trust
region-like approach to ensure that the solution trajectory
remains in a region where the linearization is a good approx-
imation of the nonlinear dynamics.



B. Inexact Steering

For inexact steering, a type of shooting method is often
employed to transfer the system from an initial state x0 2 X
to a neighborhood of a desired state x1 2 X . In [8] a constant
control selected through bisection is applied for a short time
horizon. In [11, 12] a number of piecewise constant controls
and time horizons are randomly selected until one satisfies
desired criteria.

In our approach, we linearize the dynamics around the
zero-control trajectory, solve a minimal control energy or
LQT problem, and project the linear solution to the trajectory
manifold that satisfies the system’s dynamics. The zero-control
trajectory is the solution to:

ẋ
zero

(t) = f(x
zero

(t), 0), s.t. x
zero

(0) = x0. (4)

Through the Taylor expansion about (x
zero

, 0), the affine
linear approximation (x̃, ũ) is

x̃(t) = x
zero

(t) + z(t), and ũ(t) = v(t),
where ż = A(t)z(t) +B(t)v(t), s.t. z(0) = 0

(5)

where A(t) = @

@x(t)f(x(t), u(t))|(x(t),u(t))!(x
zero

(t),0) and
B(t) = @

@u(t)f(x(t), u(t))|(x(t),u(t))!(x
zero

(t),0) are time-
varying. For the affine linear dynamics, we consider two time-
varying linear quadratic optimization problems. The first is
the minimal control energy problem while the second has
an additional cost associated with the error of the final state
with the desired state, which is a LQT problem. Finally, we
use the trajectory functional projection operator proposed and
analyzed in [5] to map the solutions to the space of feasible
trajectories S

x0 [0, th].

C. Exact steering

Exact steering calls for solving a boundary value problem to
compute a feasible trajectory (x, u) 2 S

x0 [0, th] that transfers
the system from a state x0 2 X to a state x1 2 X in t

h

>
0 time. One technique is to solve the optimal state transfer
problem [4]:

min
(x,u)2S

x0 [0,th]

Z
t

h

0
`(x(⌧), u(⌧))d⌧

s.t. x(0) = x0 and x(t
h

) = x1.

Inspired by [4], we propose a method to compute an exact
steering trajectory by iteratively solving inexact steering prob-
lems for different desired states. In other words, in order to
exactly steer x0 to x1, the approach computes an x2 2 X for
which the inexact steering trajectory from x0 to x2 is the exact
steering trajectory from x0 to x1.

III. AFFINE LTV STATE EXPLORATION

When a system is affine linear it is possible to find a subset
of states in X that are reachable from any initial state for a
bounded control effort. Later, we will extend the affine linear
reachability results to nonlinear system path planning through
a local linearization about the zero-control trajectory and a
projection.

Suppose the system with state and control (x̃, ũ) evolves
according to

x̃(t) := x̃
T

(t) + z(t) and ũ(t) := v(t)

where x̃
T

is some time-varying translation from the origin and
z is the solution to the linear differential equation

ż(t) = A(t)z(t) +B(t)v(t), s.t. z(0) = 0 (6)

where A(t) 2 Rn⇥n and B(t) 2 Rn⇥m are piecewise
continuous. Through the state-transition matrix (STM) �(t, ⌧)
of A(t), the solution to the linear differential equation is

z(t) =

Z
t

0
�(t, ⌧)B(⌧)v(⌧)d⌧. (7)

The STM is the solution to the matrix differential equation

@

@⌧
�(t, ⌧) = ��(t, ⌧)A(⌧), �(t, t) = Id

n⇥n

(8)

where Id
n⇥n

is the n⇥n identity matrix. We wish to find the
states x̃0 2 X such that there exists a control v constrained
to some set V ⇢ U which transfers x̃(0) = x̃

T

(0) to x̃0 in t
h

time. Define the set reachable at t
h

with control constrained
to V as

X̃V := {x̃0 2 Rn|9v 2 V

where x̃0 = x̃
T

(t) +

Z
t

h

0
�(t, ⌧)B(⌧)v(⌧)d⌧}.

Consider the control constrained by the control energy

kvk
R

:=
1

2

Z
t

h

0
v(⌧)TR(⌧)v(⌧) d⌧ (9)

where R(·) is a piecewise continuous matrix with R(⌧) =
R(⌧)T > 0 symmetric positive-definite. The control set with
bounded control energy is

V
�v

:= {v 2 U|1
2

Z
t

h

0
v(⌧)TR(⌧)v(⌧) d⌧ < �v} (10)

where �v > 0 and t
h

> 0.
Next, we consider an open-loop and a closed-loop form

for the control and analyze their respective bounded reachable
sets.

A. Open-Loop Exact Linear Shooting

Suppose v has the form

v(t) = �R�1(t)B(t)T�(t
h

, t)T ⌘ (11)

where ⌘ 2 Rn. The significance of this control form is that it
is the minimal-energy control with control energy Eq. 9 (see
[6] Theorem 11.4). This control is open-loop because of its
independence on z.

By setting ⌘, the control Eq. 11 transfers x̃(0) to some
x̃0 2 Rn through Eq. 6. This procedure is shooting. The �v
bounded control reachable set X̃V

�v

are the points x̃0 2 Rn

for which there exists an ⌘ for which both v 2 V
�v

and v
transfers x̃(0) to x̃0. This set X̃V

�v

is given in the following
Lemma:
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Fig. 2. Reachable set for open-loop and closed-loop double integrator for
x0 = [0.5, 1]T , �
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Lemma 1: Supposing A(·) and B(·) are so that Eq. 6 is
controllable on [0, t

h

] and that v has form Eq. 11, then

X̃V
�v

= {x̃0 2 Rn|
1
2 (x̃

0 � x̃
T

(t
h

))TW0(th)�1(x̃0 � x̃
T

(t
h

)) < �v} (12)

where the matrix W0(t), t 2 (0, t
h

] is symmetric positive-
definite and W0 is the solution to:

Ẇ0(t) = A(t)W0(t) +W0(t)A(t)T +B(t)R(t)�1B(t)T

s.t. W0(0) = 0.

Proof: The symmetric positive-definiteness of W0(·)
follows from (A(·), B(·)) controllable and R(·) symmetric
positive-definite. Its existence is guaranteed since it is the
solution to a linear differential equation. The integral form
of W0(t) is:

W0(t) =

Z
t

0
�(t, ⌧)B(⌧)R(⌧)�1B(⌧)T�(t, ⌧)T d⌧.

An ⌘ is allowable if v 2 V
�v

(see Eq. 10). That is, ⌘ is
allowable if

1

2

Z
t

h

0
vT (⌧)R(⌧)v(⌧)d⌧

=
1

2
⌘T

Z
t

h

0
�(t

h

, ⌧)B(⌧)R�1(⌧)B(t)T�(t
h

, ⌧)T d⌧⌘

= 1
2⌘

TW0(th)⌘ < �v.
(13)

Through the form of v, the solution to z for some ⌘ 2 Rn is

z(t) = �
Z

t

0
�(t, ⌧)B(⌧)R(⌧)�1B(⌧)T�(t

h

, ⌧)T d⌧⌘

= �W0(t)�(th, t)T ⌘.

Since W0(th) is positive-definite, it is invertible and the ⌘
which transfers z(0) = 0 to a desired z0 is ⌘ = �W0(th)�1z0.
Plugging ⌘ in Eq. 13 we arrive at the set of reachable z0. The
reachable x̃0 are x̃0 = x̃0

T

(t
h

) + z0 which is the set X̃V
�v

.
The set of reachable states X̃V

�v

is an ellipsoid centered
around x̃

T

(t
h

), as seen in Figure 2 for the double integrator
system. A planning algorithm can leverage Lemma 1 to choose
a reachable state and compute the state and control trajectories
(x̃, ũ) that transfer the linear system to that desired state. This
exact steering procedure for affine linear systems is as follows:

Algorithm 1 (Open-Loop Exact Linear Steering):
For x̃0 2 X̃V

�v

:
1) ⌘  �W0(t

h

)�1(x̃0 � x̃
T

(tf))
2) x̃(t) x̃

T

(t)�W0(t)�(t
h

, t)T ⌘, and
3) ũ(t) �R(t)�1B(t)T�(t

h

, t)T ⌘

The procedure relies on a well conditioned W0(·), especially
at t

h

. The time-varying matrix W0 is the reachability Gramian
weighted by R�1. It is guaranteed to be invertible when the
system (A(·), B(·)) is controllable, but numerical inversion
requires a well conditioned matrix, which is not the case
for the n-link inverted pendulum on a cart analyzed in the
examples section. The condition number at time t

h

= 1.0,
(W0(1.0)), for 1, 2, and 3-link pendulum on the cart is:

1� link : (W0(1.0)) = 1.32⇥ 106

2� link : (W0(1.0)) = 1.08⇥ 108

3� link : (W0(1.0)) = 3.33⇥ 1015.
(14)

For the 3-link pendulum, the condition number approaches
machine precision on many computing devices. When the
conditioning is sufficiently poor, the numerical error between
x̃0 and the computed x̃(t) through Algorithm 1 invalidates
the procedure. For unstable systems, the conditioning can be
improved through a closed-loop control form with stabilizing
feedback. The goal is to design a feedback so that Algorithm
1 becomes a sort of stable shooting algorithm.

B. Closed-Loop Exact Linear Steering

In order to make Algorithm 1 numerically tractable, we
consider a closed-loop system with a better conditioned reach-
ability Gramian than the open-loop system. The closed-loop
linear system is (A

K

, B) where A
K

(t) := A(t) � B(t)K(t)
with time-varying feedback gain K(t) 2 Rm⇥n. For now,
we assume K is given. It can be computed as the optimal
feedback gain of a LQR problem. With a properly designed K,
the closed-loop system (A

K

, B) should have better numerical
properties—e.g. better conditioning of relevant matrices—than
the open-loop system.

Let �
K

(·, ·) be the state-transition matrix corresponding to
A

K

. The closed-loop control form is

v(t) = �K(t)z(t)�R�1(t)B(t)T�
K

(t
h

, t)T ⌘. (15)

The closed-loop linear system dynamics are

ż(t) = A
K

(t)z(t)�B(t)R(t)�1B(t)T�
K

(t
h

, t)T ⌘,
s.t. z(0) = 0

with solution

z(t) = �
Z

t

0
�

K

(t, ⌧)B(⌧)R(⌧)�1B(⌧)T�
K

(t
h

, ⌧)T d⌧⌘

= �W
K

(t)�
K

(t
h

, t)T ⌘

where W
K

is the reachability Gramian corresponding to A
K

,
weighted by R�1, and has differential form:

Ẇ
K

(t) = A
K

(t)W
K

(t) +W
K

(t)A
K

(t)T

+B(t)R(t)�1B(t)T s.t. W
K

(0) = 0.
(16)

As with Lemma 1, we wish to find the reachable subset of
Rn in t

h

time with bounded control energy, except for the
closed-loop form:



Lemma 2: Supposing A(·) and B(·) are so that Eq. 6 is
controllable on [0, t

h

] and that v has form Eq. 15, then

X̃V
�v

= {x̃0 2 Rn|(x̃0�x̃
T

(t
h

))TS
K

(t
h

)�1(x̃0�x̃
T

(t
h

)) < �v}
(17)

where the matrix S
K

(t), t 2 (0, t
h

] is symmetric positive-
definite and is the solution to: (omitting (·))

Ṡ
K

= AS
K

+ S
K

AT

+(KW
K

�R�1BT )TR(KW
K

�R�1BT ) s.t. S
K

(0) = 0.
(18)

The proof of Lemma 2 is similar to that of Lemma 1 and for
the sake of brevity is omitted.

Similar to Lemma 1, Lemma 2 finds that the reachable
states with the closed-loop control form an ellipsoid centered
at x̃

T

(t
h

), except where the ellipsoid’s axes are parameterized
by S

K

(t
h

)�1 as opposed to W0(th)�1.
The analog to Algorithm 1 is

Algorithm 2 (Closed-Loop Exact Linear Steering):
For x̃0 2 X̃V

�v

and feedback gain K:
1) ⌘  �W

K

(t
h

)�1(x̃0 � x̃
T

(tf))
2) x̃(t) x̃

T

(t)�W
K

(t)�
K

(t
h

, t)T ⌘, and
3) ũ(t) �K(t)z(t)�R(t)�1B(t)T�(t

h

, t)T ⌘

The conditioning of W
K

and S
K

for the n-link cart pendu-
lum is a significant improvement over W0 (see Eq. 14):

1� link : (W
K

(1.0)) = 5.84 (S
K

(1.0)) = 3.80⇥ 104

2� link : (W
K

(1.0)) = 5.49⇥ 102 (S
K

(1.0)) = 2.52⇥ 106

3� link : (W
K

(1.0)) = 1.03⇥ 105 (S
K

(1.0)) = 2.57⇥ 106.

The closed loop form should be used when the open loop
reachability Gramian is poorly conditioned.

C. Inexact Linear Steering

The reachability results provide the minimal energy control
to a reachable set. When the desired state is not within the
reachable set a new objective can be considered which weights
the importance of tracking the desired state. Consider the cost
function

J(x̃, ũ; t
h

) :=
1

2

Z
t

h

0
ũT (⌧)R(⌧)ũ(⌧) d⌧

+ 1
2 (x̃(th)� x̃

des

)TP1(x̃(th)� x̃
des

)
(19)

where P1 = P1 � 0 is symmetric positive semi-definite.
Parameterized by (z, v), the cost is

J(z, v; t
h

) =
1

2

Z
t

h

0
vT (⌧)R(⌧)v(⌧) d⌧

+ 1
2 (x̃T

(t
h

) + z(t
h

)� x̃
des

)TP1(x̃T

(t
h

) + z(t
h

)� x̃
des

)
i
.

(20)
The problem is to find a state and control trajectory that
satisfies the linear dynamics Eq. 6. That is, we wish to solve
the problem

Problem 1: Solve

min
z,v;t

h

J(z, v; t
h

)

s.t. ż(t) = A(t)z(t) +B(t)v(t), z(0) = 0.

For a fixed t
h

, this problem is a linear quadratic tracking LQT
problem [1], the solution of which is well known. The optimal
control is

v?(t) = �K?(t)z?(t)
�R(t)�1B(t)T�

K

(t, t
h

)P1(x̃T

(t
h

)� x̃
des

)
(21)

with optimal feedback gain K?(t)

K?(t) = R(t)�1B(t)TP (t) (22)

where P (t) is the solution to the Riccati equation

�Ṗ (t) = A(t)TP (t) + P (t)A(t)
�P (t)B(t)R(t)�1B(t)TP (t) s.t. P (t

h

) = P1.
(23)

Notice that v? has the closed-loop form Eq. 15 except for
a specific feedback gain K(t) = K?(t) and where ⌘ =
P1(x̃T

(t
h

) � x̃
des

). The gain K in Eq. 15 can be chosen as
the optimal feedback gain from this LQT problem. The K(t)
would depend on the choice of x̃

des

as well as P1. If P1 = 0—
i.e. the cost function reduces to just the control energy—
then K? ⌘ 0—i.e. there is no feedback—and the optimal
control is the open-loop control Eq. 11. As such, the procedure
Algorithm 1 does indeed compute the minimal control energy
trajectory that transfers the system to a reachable state.

The following algorithm computes the optimal cost
J̃?(t

h

) := J(x̃?, ũ?, t
h

), and trajectory (x̃?, ũ?) for fixed t
h

:

Algorithm 3 (Fixed t
h

Inexact Linear Steering):
For x̃

des

2 X and t
h

> 0:
1) P (t) solve Riccati equation Eq. 23
2) K?(t) R(t)�1B(t)TP (t)
3) z?(t)  solve ż?(t) = A

K

? (t) �
B(t)R(t)�1B(t)T�

K

(t, t
h

)P1(x̃
T

(t
h

)� x̃
des

)
4) x̃?(t) x̃

T

(t) + z?(t), and
5) ũ?(t) �K?(t)z?(t)�R(t)�1B(t)T�

K

(t, t
h

)P1(x̃
T

(t
h

)�
x̃
des

)
6) J̃?(t

h

) solve cost function Eq. 20
7) Return J̃?(t

h

) and (x̃?, ũ?)

In comparison to Algorithms 1 and 2, this algorithm com-
putes a trajectory that tracks any state in X as opposed to just
the states in a reachable set. However, the trajectory does not
transfer the state to x̃

des

and as such is an inexact steering.
In order to solve for the optimal time horizon t?

h

, which
is called for in Problem 1, a numerical minimization like
bisection can repeatedly execute Algorithm 3 to find the t?

h

with least J̃?(t
h

):

t?
h

= argmin
t

h

J̃?(t
h

). (24)

Every execution of Algorithm 3 solves the Riccati equation,
the linear state equation, and integrates the running cost, which
is computationally expensive. Next, we propose an efficient
inexact linear steering algorithm that relies on precomputation
and caching so that the algorithm does not rely on solving any
differential equations or integrations. The precomputations are
also invariant on x̃

des

.



D. Efficient Inexact Linear Steering

For an affine linear system—i.e. for a set x
T

, A and B—
Algorithm 3 must be executed anew for distinct t

h

and x̃
des

.
As we show here, inexact linear steering gains efficiency
through precomputation and caching to remove redundancies
from multiple algorithm execution.

As previously noted, the closed-loop control Eq. 15 has the
same form as the solution to the LQT problem with optimal
control Eq. 21. The efficiency is gained through precomputing
and fixing a feedback gain K(t) and solving for ⌘ as was done
in Section III-B. In other words, the problem is minimize the
cost Eq. 20 constrained to the closed-loop control Eq. 15:

Problem 2: With fixed K(t), solve

min
⌘;t

h

J(z, v, t
h

)
s.t. ż(t) = A

K

(t)z(t)
�B(t)v(t)R�1(t)B(t)T�

K

(t
h

, t)T ⌘, z(0) = 0
v(t) = �K(t)z(t)�R�1(t)B(t)T�

K

(t
h

, t)T ⌘.

The solution to Problem 2 is not the same as the solution to
Problem 1 unless the feedback gain K(t) happens to be the
optimal K?(t).

The solution to Problem 2 is given in the following Lemma:

Lemma 3: For fixed t
h

> 0 and K and supposing A(·) and
B(·) are so that Eq. 6 is controllable on [0, t

h

], the solution
to Problem 2 is

⌘? = P
t

h

(x̃
T

(t
h

)� x̃
des

) (25)

where

P
t

h

= (W
K

(t
h

)P1WK

(t
h

) + S
K

(t
h

))�1W
K

(t
h

)P1.

Additionally,

z?(t) = �W
K

(t)�
K

(t
h

, t)T ⌘?,
v?(t) = [K(t)W

K

(t)�R(t)�1B(t)T ]�
K

(t
h

, t)T ⌘?
(26)

and
J(z?, v?; t

h

) = 1
2 (⌘

?)TS
K

(t
h

)⌘?

+ 1
2 (x̃T

(t
h

)�W
K

(t
h

)⌘? � x̃
des

)TP1(x̃
T

(t
h

)�W
K

(t
h

)⌘? � x̃
des

).
(27)

Proof: The integral form of z is Eq. 7:

z(t) =
R
t

0 �
K

(t, ⌧)B(⌧)v(⌧)d⌧

= �
R
t

0 �
K

(t, ⌧)B(⌧)R(⌧)�1B(⌧)T�(t
h

, ⌧)T d⌧⌘
= �W

K

(t)�
K

(t
h

, t)T ⌘.

Plugging z(t) into v(t),

v(t) = (K(t)W
K

(t)�R(t)�1B(t)T )�
K

(t
h

, t)T ⌘.

As such, z(t) and v(t) depend linearly on ⌘. The control
energy is

1
2

R
t

h

0 vT (⌧)R(⌧)v(⌧) d⌧

= 1
2⌘

T

R
t

h

0 �
K

(t
h

, ⌧)(K(⌧)W
K

(⌧)�R(⌧)�1B(⌧)T )T

·R(⌧)(K(⌧)W
K

(⌧)�R(⌧)�1B(⌧)T )�
K

(t
h

, ⌧)d⌧⌘
= 1

2⌘
TS

K

(t
h

)⌘.

The cost is thus

J = 1
2 (⌘)

TS
K

(t
h

)⌘ + 1
2 (x̃T

(t
h

)�W
K

(t
h

)⌘ � x̃
des

)T

·P1(x̃T

(t
h

)�W
K

(t
h

)⌘ � x̃
des

)

with optimal ⌘? where @

@⌘

J |
⌘!⌘

? = 0:

@

@⌘

J |
⌘!⌘

? = [(S
K

(t
h

) +W
K

(t
h

)P1WK

(t
h

))⌘
�W

K

(t
h

)P1(x̃T

(t
h

)� x̃
des

)]
⌘!⌘

? = 0.

Since S
K

(t
h

) and W
K

(t
h

) are positive definite through the
controllability assumption, (S

K

(t
h

) +W
K

(t
h

)P1WK

(t
h

)) is
invertible. Solving for ⌘? results in Eq. 25.

The lemma instructs how to do efficient fixed t
h

inexact
steering:

Algorithm 4 (Efficient Fixed t
h

Inexact Linear Steering):
For x̃

des

2 X and t
h

> 0:
1) P

t

h

 (W
K

(t
h

)P1W
K

(t
h

) + S
K

(t
h

))�1W
K

(t
h

)P1
2) ⌘?  P

t

h

(x̃
T

(t
h

)� x̃
des

)
3) x̃?(t) x̃

T

(t)�W
K

(t)�
K

(t
h

, t)T ⌘?

4) ũ?(t) [K(t)W
K

(t)�R(t)�1B(t)T ]�
K

(t
h

, t)T ⌘?

5) J̃?(t
h

) solve Eq. 27
6) Return J̃?(t

h

) and (x̃?, ũ?)

The algorithm is efficient compared to Algorithm 4 because
it does not rely on solving any differential equations assuming
certain functions have been precomputed. The functions to
be precomputed and saved in memory are K(t), W

K

(t),
S
K

(t) and �
K

(tmax

h

, t) for a specified long time horizon
t 2 [0, tmax

h

], tmax

h

> 0. As such, Algorithm 4 relies solely
on matrix manipulations to return a fixed t

h

inexact linear
steering trajectory assuming t

h

< tmax

h

. Note that �
K

(t
h

, t) =
�

K

(tmax

h

, t
h

)�1�
K

(tmax

h

, t). Also, �(t
h

, t
h

) = Id
n⇥n

and so
x̃?(t

h

), ũ?(t
h

) and J̃?(t
h

) do not rely on precomputing �.
As with Algorithm 3, Algorithm 4 can be executed many

times in a minimization procedure to solve for the optimal
time horizon t?

h

through Eq. 24.
As of yet, the feedback gain is assumed to have been chosen

in some way. A reasonable choice is the optimal feedback gain
to the LQT problem, Problem 1, for the max time horizon
t
h

= tmax

h

. It is the case that the solution to Problem 2 is
equivalent to the solution to Problem 1 when P1 = P

t

h

. In
other words, if P1 = P

t

h

, then K = K?, which will be the
case at least at tmax

h

for this choice of K.

IV. EXTENDING TO NONLINEAR SYSTEM

We extend the affine linear steering results in Section III to
nonlinear dynamics ẋ(t) = f(x(t), u(t)) by projecting inexact
and exact linear steering trajectories to feasible trajectories.
For an initial state x0 that may be a vertex of a graph generated
by a planner, the dynamics are linearized about the zero-
control trajectory for t

h

> 0 time. The zero-control trajectory
x
zero

is given by Eq. 4 and the linearization is in Eq. 5.
A planner can pick which linear steering algorithm, Algo-

rithms 1-4, to approximately transfer the system to a desired
state x

des

. The resulting approximate trajectories (x̃, ũ) are
not feasible—i.e. (x̃, ũ) do not satisfy the system dynamics—
unless the dynamics are linear.



When the approximate trajectories are within a region where
the linearization is reasonable, then there are nearby feasible
trajectories. The trajectory functional projection operator P
proposed in [5] maps (x̃, ũ) to a feasible trajectory (x, u) 2
S
x0 [0, th]:


x
u

�
= P

✓
x̃
ũ

�◆
:=

⇢
ẋ = f(x, u)
u = ũ�K(x� x̃).

(28)

The projection is a feedback loop with gain K, reference signal
x̃, and feedforward term ũ. The feedback gain may be chosen
as the optimal feedback of an LQR or LQT problem.

A. Trust Region

Depending on the dynamics and the time horizon t
h

, the
projected trajectories (x, u) may not be near the approximate
trajectories (x̃, ũ). In other words, it is possible that for

H :=
J(x, u, t

h

)

J(x̃, ũ, t
h

)

that H >> 1 where J is a cost on the state, control and
final time with form Eq. 2. When H >> 1, the projected
and approximate trajectories are far from each other and the
projection is untrustworthy, in which case the results should
be discarded.

This trust region-like approach assesses when the approx-
imation is trustworthy. Each vertex x0 2 V in a graph
generated by a planner has its own trust region. As such, the
trust regions are state dependent. The region is restricted by
a maximum allowable time horizon t

h

. When trustworthy, the
trust region may be expanded by increasing t

h

. When untrust-
worthy, the trust region is contracted by decreasing t

h

. Since
the linearization is around the zero-control trajectory, there is a
sufficiently short time horizon for which any nonlinearities are
inconsequential. The trust region approach avoids choosing a
single conservative maximal horizon time for all X . Instead,
the maximal time horizon is dictated by the local dynamics.

In order to contract or expand the trust region and to
determine whether the projection is trustworthy or not, choose
variables 0 < ↵ < ↵ and � > 1. Expand or contract according
to the following chart:

H < ↵ =) trustworthy (expand): t
h

! t
h

· �
↵ < H < ↵ =) trustworthy (no expand): t

h

! t
h

↵ < H =) untrustworthy (contract): t
h

! t
h

/�.

The trust region approach allows a planner to make decisions
based on approximate trajectories without projecting them to
the feasible space. One of these decisions is computing the
nearest neighbor.

B. Inexact Steering

Inexact steering transfers a vertex x0 2 V to a state
near a desired state x

des

. Suppose K(t), W
K

(t), S
K

(t) and
�

K

(tmax

h

, t) have been computed for the vertex x0. Then, the
efficient inexact steering trajectory is computed by projecting
the approximate trajectories given by efficient inexact linear
steering, Algorithm 4.

Algorithm 5 (Efficient Inexact Steering):
For x0 2 X and x

des

2 X:
1) t?

h

 argmin
t

h

J̃?(t
h

)
2) J̃?(t

h

) Algorithm 4 for t
h

3) (x̃?, ũ?, J̃?(t?
h

)) Algorithm 4 for t?
h

4) (x, u) P(x̃?, ũ?)
5) return (x, u, x̃, ũ, J̃?(t?

h

), t?
h

)

C. Nearest Neighbor

The nearest neighbor computation chooses the vertex x0 2
V of the graph G = (V, E) nearest a sampled state x

samp

2 X
where nearest is specified by a distance function d : X ⇥
X ! R. The distance between two states x0 and x

samp

,
d(x0, xsamp

), is the optimal cost to transfer the system from
x
samp

to or nearby x
samp

, Eq. 3. Choose the cost J as the
cost for inexact linear steering, Eq. 19, where the desired state
is x

samp

:

J(x, u; t
h

) :=
1

2

Z
t

h

0
uT (⌧)R(⌧)u(⌧) d⌧

+ 1
2 (x(th)� x

samp

)TP1(x(th)� x
samp

).
(29)

Ideally, the distance is d(x0, xsamp

) = J(x?, u, t?
h

) for the
optimal feasible trajectory (x, u) 2 S

x0 [0, t
?

h

]. Since such
a non-linear optimal control problem is slow to compute,
we instead set d(x0, xsamp

) = J(x̃?, ũ?, t?
h

), which is the
approximate distance given by inexact linear steering (see
Section III-D and Algorithm 4)

The trust region paradigm provides an expectation
that J(x̃?, ũ?, t?

h

) = J(x?, u, t?
h

)—i.e. J(x̃?, ũ?, t?
h

) <
J(x?, u, t?

h

)/↵. Since a planning algorithm steers from the
nearest vertex, if its distance is untrustworthy, then the trust
region for the nearest vertex is contracted and the results of
the nearest neighbor are discarded.

D. Exact Steering

Exact steering finds a feasible trajectory (x, u) that connects
an initial state x0 to a desired state x

des

. Let

E =
1

2
(x(t

h

)� x
des

)TP1(x(th)� x
des

)

be the error between the desired state and the state transferred
to at time t

h

. When an exact steering trajectory is found,
E = 0. Inexact steering with desired state x

des

will generate a
feasible trajectory (x, u) though Algorithm 5 for which E > 0.
However, for a different desired state, inexact steering may find
a trajectory that solves the exact steering problem. Label the
desired state for the inexact steering as x

pull

. The problem is
to find the state x

pull

2 X that “pulls” the inexact steering
trajectory to x

des

. In other words, inexact steering performs a
mapping g(x

pull

, t
h

) ! (x, u) where we wish to find a pair
x
pull

2 Rn and t
h

> 0 for which x(t
h

) = x
des

.
The mapping g is (x, u) = P(x̃, ũ) where the approximate

trajectories (x̃, ũ) are given in Lemma 3, which assumes
precomputations of x

zero

, K, W
K

, S
K

and �
K

.
The approach is to minimize E over x

pull

and t
h

con-
strained to g. For a fixed t

h

, E can be minimized through



a numerical minimization routine like steepest descent with
gradient @

@x

pull

E. The gradient is given in the following
lemma:

Lemma 4: For t
h

> 0, the gradient of E with respect to
x
pull

2 X where (x, u) = g(x
pull

, t
h

) is

@

@x
pull

E = (x(t
h

)� x
des

)TP1�(th) (30)

where � = @

@x

pull

x is the solution to

�̇(t) = A
K

(t)�(t) +B(t)[
@

@x
pull

ũ�K(t)
@

@x
pull

x̃] (31)

where
@

@x
pull

x̃(t) = W
K

(t)�
K

(t
h

, t)TP
t

h

and
@

@x
pull

ũ(t) = �[K(t)W
K

(t)�R(t)�1B(t)]�
K

(t
h

, t)TP
t

h

.

Proof: The partial derivative of E with respect to x
pull

is Eq. 30. The partial derivative of the projection (x, u) =
P(x̃, ũ) Eq. 28 is

@P
@x

pull

=

⇢
�̇(t) = A(t)�(t) +B(t)µ(t), �(0) = 0
µ(t) = @

@x

pull

ũ(t)�K(t)[�(t)� @

@x

pull

x̃(t)]

where µ = @

@x

pull

u. Plugging µ(t) into �̇(t) results in Eq. 31.
The partials @

@x

pull

x̃(t) and @

@x

pull

ũ(t) are the partials of
Eq. 26 with x̃ = x

zero

+ z and ũ = v and @

@x

pull

⌘ = �P
t

h

.

For a choice of t
h

> 0, the gradient result in Lemma 4 can
be used in a numerical minimization procedure to iteratively
step to a x

pull

for which E = 0.

V. EXAMPLES AND ALGORITHM

Using the steering and nearest neighbor methods proposed
in the paper we conduct an RRT to plan a trajectory that
transfers an n-link pendulum on a cart through a corridor of
obstacles to a goal state. The state is composed of the pen-
dulum angles ✓

i

, their angular velocities ✓̇
i

, the cart position
p and the cart velocity ṗ. The control is the force applied to
the cart, accelerating it forward or backward. The pendulums
are in inverted equilibrium for both the start and goal states,
with cart position at p

start

= 0m and p
goal

= 6m, as seen in
Figure 1a and b. The system must find a path to connect the
start and goal without the pendulum heads colliding with the
obstacles. The obstacles are circles of radius 0.6 at (3,�0.85)
and (3, 0.85).

We consider both 2-link (see Figure 1a) and 1-link (see
Figure 1b) systems. The 2-link is composed of n = 6 states
while the 1-link is composed of n = 4 states. Each pendulum
head has mass 0.1 kg and the pendulum lengths are assumed
massless. The 1-link pendulum length is 1 m long while both
the lengths for the 2-link pendulum are 0.5 m long. The cart
has mass 1 kg.

The path is found by executing RRT [10] with inexact steer-
ing (see Section IV-B) and a trust region (see Section IV-A).

The choices for the algorithm parameters are tmax

h

= 1.0s,
↵ = 3, ↵ = 1.1, and � = 1.25. The matrices R and P1 in the
cost J , Eqs. 19 and 29, are R = [0.025] and P1 = Id

n

the
n⇥ n identity matrix.

RRT formulated with efficient inexact steering through
precomputing and with a trust region follows. The methods in
this paper can also be implemented for more complex planners
like RRT*.

Algorithm 6 (RRT with Efficient Inexact Steering and Trust Region):
for x

start

2 X:
1) Precompute x

zero

,K,W
K

, S
K

,�
K

for x
start

over t 2
[0, tmax

h

]. (Eqs. 4, 22, 16, 18, 8)
2) N

init

= {x
start

, t
h

, x
zero

,K,W
K

, S
K

,�
K

}
3) V  {N

init

}; E  ;
4) while x

goal

not found:
5) x

samp

 sample(x)
6) N

near

 nearestneighbor(V, x
samp

). (Sec IV-C)
7) (x

new

, u
new

, x̃
new

, ũ
new

, J̃?, t?
h

) Alg. 5 from N
near

8) (x, u) P(x̃, ũ) (Eq.28)
9) H  J(x, u, t?

h

)/J̃?

10) if H < ↵ : N
near

.t
h

 min(N
near

.t
h

· �, tmax

h

)
11) if ↵ < H : N

near

.t
h

 N
near

.t
h

/�; Go to step 4
12) if (x

new

(t), u
new

(t)) 2 (X,U) for all t 2 [0, t?
h

]:
13) Precompute x

zero

,K,W
K

, S
K

,�
K

for x
new

(t?
h

)
over t 2 [0, tmax

h

].
14) N

new

 {x
new

(t?
h

), N
near

.t
h

, x
zero

,K,W
K

, S
K

,�
K

}
15) V  V [ {N

new

}; E  E [ {(x
new

, u
new

; t?
h

)}
16) return G = (V, E)

The results of applying Algorithm 6 are in Figure 1, which
shows the explored trajectories for the top pendulum in gray
and the connecting trajectory in blue. The one-link pendulum
on a cart found x

goal

by the 115th node while the two-link
pendulum on a cart found it by the 335th node. Both found
allowable trajectories of max time horizon tmax

h

= 1.0s.

VI. DISCUSSION / CONCLUSION

There are two paradigms for sample-based planning of
dynamic systems. The first, currently dominating, is to search
with a shorter time horizon and simple steering and distance
computations which is made up for through many samples
and searches and generating a graph with many nodes—e.g.
on the order of 10000 [8, 11, 12]. The second is to search
with longer time horizons and to make informed steering and
distance computations as we introduce in this paper. While this
approach has the potential to solve hard planning problems
using much fewer number of nodes—e.g, on the order of
100 as in this paper—linearizing around the free trajectory
instead of a single state is more expensive. Yet, we believe that
appropriate precomputing the reachability gramian and other
relevant functions and caching redundant calculations for each
node, together with an overall smaller number of nodes, will
make the proposed approach be more efficient in the long run.
In future work, we will implement the proposed steering and
distance computations on the state of the art * planners, to
quantitatively compare performance benefits of this trade-off.

Indeed, computing geodesics in the trajectory manifold (the
equivalent of the Euclidian distance in kinematic systems)
is common to both RRT and RRT*-type algorithms, making
transferring the proposed methods straightforward.
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